
Using a high throughput, in-line atmosphere chemical vapor deposition (APCVD) tool, we have synthesized amorphous aluminum oxide (AlOx) films from precursors of trimethyl-aluminum (TMA) and O2, yielding a maximum deposition 150 nm min–1 per wafer. For p-type crystalline silicon (c-Si) wafers, excellent surface passivation was achieved with the APCVD AlOx films, with a best maximum effective surface recombination velocity (Seff,max) of 8 cm/s following a standard industrial firing step. The findings could be attributed to the existence of large negative charge (Qf ≈ –3 × 1012 cm–2) and low interface defect density (Dit ≈ 4 × 1011 eV–1 cm–2) achieved by the films. This data demonstrates a high potential for APCVD AlOx to be used in high efficiency, low cost industrial solar cells. (© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)